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Abstract

Background—Several epidemiological cross-sectional studies have found positive associations 

between serum concentrations of lipids and perfluorooctanoic acid (PFOA, or C8). A longitudinal 

study should be less susceptible to biases from uncontrolled confounding or reverse causality.

Methods—We investigated the association between within-individual changes in serum PFOA 

and perfluorooctanesulfonic acid (PFOS) and changes in serum lipid levels (low-density 

lipoprotein [LDL] cholesterol, high-density lipoprotein cholesterol, total cholesterol, and 

triglycerides) over a 4.4-year period. The study population consisted of 560 adults living in parts 

of Ohio and West Virginia where public drinking water had been contaminated with PFOA. They 

had participated in a cross-sectional study in 2005–2006, and were followed up in 2010, by which 

time exposure to PFOA had been substantially reduced.

Results—Overall serum concentrations of PFOA and PFOS fell by half from initial geometric 

means of 74.8 and 18.5 ng/mL, respectively, with little corresponding change in LDL cholesterol 

(mean increase 1.8%, standard deviation 26.6%). However, there was a tendency for people with 

greater declines in serum PFOA or PFOS to have greater LDL decrease. For a person whose 

serum PFOA fell by half, the predicted fall in LDL cholesterol was 3.6% (95% confidence interval 

= 1.5–5.7%). The association with a decline in PFOS was even stronger, with a 5% decrease in 

LDL (2.5–7.4%).

Conclusions—Our findings from this longitudinal study support previous evidence from cross-

sectional studies of positive associations between PFOA and PFOS in serum and LDL cholesterol.
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Perfluorooctanoic acid (PFOA; also known as C8), a fluorinated eight-carbon member of the 

perfluoroalkyl acid (PFAA) family, has been used as a processing aid to manufacture 

fluoropolymers, which are used in products for nonstick, heat and chemical resistance 

applications. In rodents PFOA causes peroxisome proliferation, developmental toxicity, 

immunotoxicity, and hepatotoxicity.1,2 PFOA activates the α-isoform of the peroxisome 

proliferation-activated receptors (PPARα), a nuclear receptor important in lipid 

regulation.3,4 In animals, PFOA reduces serum triglyceride and cholesterol levels, as well as 

lipid accumulation in the liver, similar to the response in humans to treatment with fibrates, 

which act via PPARα.1,5,6 PFOA does not break down in the environment and persists in 

humans, with half-life estimated at 2.3 to 3.8 years.7,8 Still, its effects on human health are 

not clear.9,10 Studies in human populations have reported positive associations between 

PFOA and low-density lipoprotein (LDL) and total cholesterol, but not usually high-density 

lipoprotein (HDL) cholesterol or triglycerides.11–17 However, a recent study in 55 highly 

exposed Chinese workers (PFOA geometric mean 1,272 ng/mL) found an inverse 

association between HDL cholesterol and PFOA.18 Some of the studies on PFOA also 

investigated associations between serum concentrations of lipids and perfluoroctanesulfonic 

acid (PFOS), another eight-carbon PFAA. PFOS has been found to be independently 

associated with serum lipids, after adjusting for PFOA.17

Most of the positive associations between PFOA or PFOS and total or LDL cholesterol are 

from cross-sectional studies; thus there are limitations to causal inference. Cross-sectional 

associations could arise if, for example, PFOA uptake or excretion is affected by lipid levels, 

or if some other factor is responsible for variation in both PFOA and lipids. For this study, 

we had measurements on individuals at two time points 4 to 5 years apart, and we may thus 

consider the association between change in serum PFAAs and change lipids with potentially 

less bias. This study design means that parameter estimates are not biased by confounding 

variables that do not change over time, and whose effects do not change (for instance, 

genetic factors that affect the excretion rate of PFAAs). We investigated the association 

between changes in both serum PFOA and PFOS and changes in serum lipids (LDL 

cholesterol, HDL cholesterol, total cholesterol, and triglycerides), in a population exposed to 

high levels of PFOA via contaminated drinking water.

METHODS

Study Design and Participants

The study sample was derived from The C8 Short-Term Follow-up Study, one of the C8 

Science Panel studies, based on a population with high exposure to PFOA via contaminated 

drinking water. Those studies are described at http://www.c8sciencepanel.org. Details are 

provided in the eAppendix (http://links.lww.com/EDE/A675).

Plant emissions of PFOA peaked in 2000 and decreased between 2001 and 2004 to much 

lower levels.19 However, contamination remained in the local environment, and exposure to 

PFOA in drinking water was further reduced by filtration of the public water supplies 

between March 2006 and September 2008. Serum concentrations of PFOS fell during the 

period of this study, in a pattern fairly similar to that observed in the US population between 

1999 and 2008.20 PFOA and PFOS were measured in serum samples collected at the 
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original survey and follow-up. At baseline, concentrations were determined using protein 

precipitation followed by reversed-phase high-performance liquid chromatography/tandem 

mass spectrometry.21 At follow-up, the approach followed an online solid phase extraction 

coupled with reversed-phase high-performance liquid chromatography separation and 

detection by isotope-dilution tandem mass spectrometry.22 The two techniques are known to 

produce equivalent results for the analysis of serum PFAAs.23 Furthermore, both 

laboratories participated in an interlaboratory study that reported a reasonable agreement, 

particularly for PFOS and PFOA.24 Therefore, any differences in serum concentrations of 

PFAAs between baseline and follow-up should not be attributable to differences in the 

analytical methods. Further details are provided in the eAppendix (http://

links.lww.com/EDE/A675).

The blood samples collected at the initial survey and follow-up were also used to determine 

lipid profiles. Participants were not required to fast before blood draw, but fasting status was 

recorded and participants classified as fasting if the time since their last meal was more than 

6 hours. Serum was separated from red cells, put in transport tubes and refrigerated before 

being shipped to an accredited commercial laboratory. Lipids were measured enzymatically. 

LDL cholesterol was calculated by the Friedewald equation when triglycerides were lower 

than 400 mg/dL.25 Serum creatinine was also measured, and we used this to calculate the 

glomerular filtration rate (GFR; mL/min), a measure of the rate of flow of filtered fluid 

through the kidneys, using the equation developed by the Modification of Diet in Renal 

Disease study: 186*creatinine−1.154* age−0.203*(7.43 if female)*(1.21 if black).26

For the analysis of change in serum lipids, we excluded 195 participants in the C8 Short-

Term Follow-up Study (n = 755) who had reported using lipid-lowering drugs at baseline or 

follow-up. Excluding those pharmacologically treated for high cholesterol left 560 eligible 

participants, all of whom had 2 measurements of total cholesterol, HDL cholesterol, and 

triglycerides. However, 33 at baseline and 20 at follow-up had no LDL cholesterol 

calculated because their triglycerides were greater than 400 mg/dL, leaving 521 people for 

the LDL analysis.

Statistical Analyses

A model for the cross-sectional association between serum lipids yit and PFAA in serum xit 

in individual i at times t = 1 (C8 Health Project 2005/6) and t = 2 (follow-up 2010) may be 

given as yit = αt + βxit + γ′wi + δ′tzit + εit, where w represents time-invariant confounding 

variables and z represents confounding variables that change (or whose effects change) over 

time; we have assumed that the association between serum lipids and PFAA does not 

change. A simple model for change in serum lipids versus change in PFAA may be derived 

by subtraction of the cross-sectional model at baseline from that at follow-up. A strength of 

this approach is that bias due to time-invariant confounding (w) is eliminated by subtraction. 

Further detail on the properties of models of this type is discussed by Liker et al.27

In the cross-sectional analysis of the C8 Health Project data, a linear model for LDL in 

relation to PFOA, in which measurements of both were logarithmically transformed, 

provided a better fit than a linear model for untransformed values.17 We also found this in a 

cross-sectional analysis of the follow-up study. We based this conclusion on inspection of 
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residual plots (not shown) and on comparison of global tests of model assumptions.28 At 

baseline, the test statistic for the hypothesis that four linear model assumptions were 

satisfied was 8.61 for logarithmically transformed changes, whereas without transformation 

the test statistic was 59.38. These may be compared with a chi-square distribution with four 

degrees of freedom and provide evidence that model assumptions are satisfied with log-

transformed changes but not with untransformed changes.

To examine the relationships between changes in PFOA and PFOS and changes in serum 

lipids, we first fit linear regression models for the logarithm (base 10) of ratio change in 

each serum lipid measurement in relation to the logarithm of ratio change in PFOA and 

PFOS separately. This is equivalent to the difference between baseline and follow-up 

log(lipids) being a linear function of the difference in log(PFAA). The change-versus-

change model is given by

That is,

where (αr, βr, δr) are the parameters for the model, zi may vary across time, and εi is the 

difference between error terms in the two cross-sectional models.

By design, this model eliminates (by subtraction) confounding by factors that do not change 

(or whose effects do not change) over time. This design should also eliminate most biases 

that might occur due to regression to the mean (people with extreme values of lipids at the 

first time tending to have values closer to the mean at the second time). We confirmed this 

by simulation, and further details are provided in the eAppendix (http://links.lww.com/EDE/

A675). Also, it is known that when the true change in response is independent of the initial 

response, regression to the mean may bias the estimate of interest if the initial value of the 

response is included as a predictor; we did not include the initial value of the response in our 

models.29

A further advantage of this design is that the parameter estimate of interest is robust to 

systematic lab drift in the measurement of either predictor or response. For instance, if the 

first or second measurement were consistently over- or underestimated by a constant, the 

intercept of the change-versus-change model would alter but the slope would remain the 

same. (However, the average change in the predictor would be altered by a systematic 

change in measurement, and therefore, the relationship between the average change in 

response and average change in predictor would be affected.) Furthermore, if there were 

more variability in measurements conducted by one laboratory than the other, this would 

affect variance estimates but would not bias the parameter estimates. However, the 

geometric standard deviations (SDs) for serum PFOA in the 755 blood samples were 

similar, 3.22 at baseline, and 3.54 at follow-up.
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These models were adjusted for age at baseline in four 10-year categories, continuous time 

between measurements, sex, and fasting status in four categories (fasting at both times, 

fasting then nonfasting, nonfasting then fasting, and nonfasting at both times). Age, sex, and 

time interval are possible confounders of the relationship between change in serum lipids 

and change in PFOA/PFOS. Fasting status, which is related to time of day, can affect lipid 

levels, and proportions of people travelling from differentially exposed areas to the centers 

for blood testing varied during the day; hence people who had to travel further were more 

likely to be nonfasting when they gave their second samples, and change in fasting status 

may confound the relationship between changes in serum PFOA and certain lipids. We had 

no a priori expectation that other measured variables would confound the relationship 

between changes in serum lipid measurements and changes in PFOA or PFOS, as factors 

that do not change (and whose effect does not change over time) are eliminated by design. 

However, as a sensitivity analysis, we calculated the parameter estimates after adjusting for 

baseline body mass index (BMI) (follow-up BMI was not reported), years of schooling, 

change in smoking, and baseline and change in GFR.

We fit analogous models with PFOS as the exposure of interest. Finally we fit joint models 

including changes in PFOA and PFOS, first with the logarithm of PFOA ratio and a spline 

smooth for PFOS ratio, and then vice versa. We did this by fitting generalized additive 

models, with spline smooths chosen by generalized cross-validation.30

From the estimated regression coefficients we calculated the predicted percentage change 

and 95% confidence interval (CI) in the response with a 50% drop in PFOA or PFOS serum 

concentrations. Models were fit using R Version 2.15.1.31

RESULTS

The population comprised more women (54%) than men, and ages were evenly distributed 

across the range (20–60 years at baseline), although there was a slightly larger proportion in 

the 30–50 years range. Mean BMI was 28.0, and 19% were smokers at the time of the initial 

survey. The mean interval between surveys was 4.4 years (SD = 11.7 weeks). There were 

262 (47%) people who gave two nonfasting samples and 53 (10%) who gave two fasting 

samples, 164 (29%) who were fasting for the first sample but not the second, and 78 (14%) 

who were not fasting for the first sample but were for the second.

The serum concentrations of lipids, PFOA, and PFOS at the time of survey and follow-up 

are summarized in Table 1. The mean serum PFOA and PFOS both decreased by 

approximately one half between baseline and follow-up. The mean changes in lipids were 

very small, but there was large variability among individuals. For instance, mean serum 

LDL cholesterol increased 1.8% (from 112.4 to 113.8 mg/dL) with a standard deviation of 

27%.

Figures 1A and 2A illustrate the change in LDL ratio by tertile of PFOA and PFOS, 

respectively. Ratios are the baseline value divided by the follow-up value, and PFAA tertiles 

are ordered by magnitude of decrease. Figure 1A shows that people whose PFOA fell by 

less than one half had a slight increase in LDL on average. In contrast, those whose PFOA 
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fell by more than 64% had very little change in LDL cholesterol. Plots for total cholesterol 

show a similar pattern to LDL (Figures 1C and 2C). There is slight suggestion of 

associations for HDL cholesterol (Figures 1B and 2B) but no suggestion of associations for 

triglycerides (Figures 1D and 2D).

These figures describe the broad picture. Regression models used change as a continuum, 

expressed as the logarithm of the ratio between final and initial values. Results are 

summarized in Table 2. The estimates from the adjusted models (Model 2) were slightly 

larger than the estimates from the unadjusted models (Model 1) for LDL, HDL, and total 

cholesterol. From Model 2, for change in LDL ratio versus change in PFOA ratio, adjusted 

for age, sex, fasting status, and interval between measurements, we found that for persons 

whose PFOA halved over the study time, LDL decreased an average of 3.6% (95% CI = 

1.5–5.7%). We also found that halving PFOA predicted a total cholesterol decrease of 1.7% 

(95% CI = 0.3–3.0%). There was some suggestion of a similar association between change 

in HDL cholesterol and change in PFOA, but no evidence for an association between change 

in triglycerides and change in PFOA.

The second part of Table 2 shows results for PFOS. The results are similar, although the 

magnitude (and variability) of decreases in lipids predicted by PFOS is slightly larger. We 

found an adjusted decrease in LDL cholesterol of 5.0% (95% CI = 2.5–7.4%) and an 

adjusted decrease in total cholesterol of 3.2% (95% CI = 1.6–4.8%), predicted by a 50% 

decline in PFOS. We found no evidence of association between changes in HDL or 

triglycerides and changes in PFOS.

The R2 and partial R2 values for the change in each PFAA separately for Model 2 are also 

shown in Table 2. Many other factors influence variations in cholesterol, and these R2 

values are small. For both PFAAs, the partial R2 values for the LDL and total cholesterol 

responses make up a substantial proportion of the overall R2.

Decreases in serum PFOA and PFOS were quite highly correlated (Spearman’s ρ = 0.51). 

When, as a sensitivity analysis (Model 3), we included both PFOA and PFOS ratio changes 

in the model, with the control variable included as a smooth term, most of the associations 

weakened. However, the associations of LDL cholesterol with PFOA and PFOS, and of total 

cholesterol with PFOS, remained after mutual adjustment.

The sensitivity analysis in which we included in Model 2 variables that we considered 

would not change (or whose effects would not change over time) gave parameter estimates 

that were very close to the estimated effect of change in PFOA on change in LDL from 

Model 2. We included years of schooling, baseline BMI, and change in smoking status in 

Model 2 for LDL versus PFOA, but these had very little impact on the parameter estimate. 

The largest effect was after adding a smooth term for BMI, giving an estimated decrease in 

LDL per halving PFOA of 3.6% (95% CI = 1.4–5.6%)—very close to the estimate without 

adjustment for BMI. Baseline GFR was associated with change in PFOA, predicting 0.50% 

(95% CI = 0.14–0.86%) more decrease in PFOA per unit increase in baseline GFR, but 

including baseline GFR had very little effect on the parameter estimate for change in PFOA. 

Including change in GFR as a smooth term had little effect on the parameter estimate, the 
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magnitude being similar to what we observed upon inclusion of BMI (the estimated decrease 

in LDL per halving PFOA was 3.6% with 95% CI [1.5–5.7%]).

DISCUSSION

These change-versus-change models are equivalent to repeated measures models with fixed 

effects for subjects. We decided against using repeated measures models with random 

effects for subjects, as change-versus-change models are not subject to bias due to time-

invariant confounding. We have found that LDL cholesterol was positively related to both 

PFOA and PFOS in serum. This supports previous evidence of a positive association 

between serum LDL cholesterol and PFOA and adds to evidence for a causal effect of 

PFOA or PFOS on lipids.

During the study period, overall serum concentrations of both PFAAs decreased by 

approximately one half, and there was little change in LDL cholesterol, with mean increase 

1.8% (SD 26.6%). Some evidence from previous studies suggests a slight overall increase in 

total cholesterol over a few years in untreated people, mainly due to increases in younger 

age groups.32 In clinical trials, there is little evidence of change in cholesterol among 

placebo groups over this length of time.33 These appear to be consistent with our study, 

where overall there is little evidence of change in cholesterol.

We found a tendency for study participants with a larger PFOA decrease to have a larger 

LDL decrease, such that halving of PFOA predicted a 3.6% (1.5–5.7%) fall in LDL 

cholesterol, adjusted for possible confounders. We also found a greater estimated decrease 

in LDL cholesterol of 5.0% (2.5–7.4%) when PFOS was halved. We found similar results 

for total cholesterol. There was some suggestion of association between change in HDL 

cholesterol and change in PFOA, but no evidence of association between change in 

triglycerides and change in either PFOA or PFOS.

The joint models including both PFOA and PFOS should be interpreted with caution 

because PFOA and PFOS are highly correlated. Nevertheless, despite increased standard 

errors in these models, which made identification of associations more challenging, 

associations of LDL with both PFOA and PFOS remained.

As a sensitivity analysis of the logarithmic transformation, and for comparison with previous 

studies, we fit models for the untransformed difference in response versus the difference in 

PFOA and PFOS, adjusted for possible time-varying confounders, and we discuss this 

analysis in the eAppendix (http://links.lww.com/EDE/A675). We do not find these results 

inconsistent with the conclusions regarding our primary hypothesis.

Steenland and colleagues,17 using data from the C8 Health Project, found an average 

difference in LDL of 0.015 (standard error = 0.001) for a one unit change in PFOA on the 

natural logarithm scale—that is, a predicted decrease of 1.0% (0.9%, 1.2%) in LDL for a 

halving in PFOA. This estimate is smaller than our longitudinal estimate of 3.6%. This may 

be due to biases operating differently in the two study designs.
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There have been only three other longitudinal studies of the relationship between cholesterol 

and PFOA, all smaller than the current study. A study34 of highly exposed workers (n = 175) 

reported positive associations between serum PFOA and total cholesterol and triglycerides, 

but not HDL; the authors found no associations between cholesterol and PFOS. Another 

longitudinal study,15 on 454 exposed workers, found a positive association between PFOA 

and total cholesterol but no association with LDL, HDL, or triglycerides. A recent study35 of 

179 workers exposed to high levels of PFOA found little evidence of association between 

PFOA and total, HDL, or non-HDL cholesterol but did not examine LDL cholesterol or 

triglycerides. This study was limited in time of follow-up (mean 5.5 months). The main 

analysis was for untransformed differences in response versus predictor (the authors also fit 

a model in a subset with the predictor log-transformed but not the response); a linear model 

for untransformed changes in total cholesterol versus PFOA gave an adjusted parameter 

estimate of −1.86 with 95% CI (−4.25 to 1.15), which overlaps our estimate of −0.72 (−2.34, 

0.90) shown in Table 3 in the eAppendix (http://links.lww.com/EDE/A675). With PFOS as 

the predictor, the parameter estimate was 0.59 (−3.75, 4.91), which also overlaps our 

estimate of 0.41 (0.15, 0.67). Lower power might explain failure of these studies to identify 

some of the associations found in this study. Also, the first two studies described did not 

control for use of lipid-lowering drugs.

In the change-versus-change analysis, confounding is less of a problem than in a cross-

sectional analyses because many risk factors varying between people (such as GFR, diet, 

exercise, BMI, and other lifestyle factors) are relatively constant within people over time, or 

at least not likely to vary with changes in serum PFOA and PFOS. We took account of 

possible confounding due to changes in use of lipid-lowering drugs by exclusion, also 

allowing for possible nonidentification of treatment (see eAppendix, http://

links.lww.com/EDE/A675). We also considered the possibility that our estimates were 

affected by regression to the mean, but neither analytic considerations nor simulations 

indicated that this was the case. Moreover, we observed little evidence of associations for 

triglycerides or HDL cholesterol, which would also likely give rise to spurious associations 

if regression to the mean were an issue. Also, the change in exposure to PFOA was due to a 

specific intervention—the ending of contamination of public water supplies. This “natural 

experiment” further reduces likelihood of reverse causation and thus strengthens a causal 

interpretation of the association we observed between changes in serum concentrations of 

PFAAs and cholesterol.

This study has certain limitations. We had only two time points from which to estimate the 

relationship between change in serum cholesterol and change in PFOA and are therefore 

unable to distinguish an association more complex than linear. Another limitation is the 

uncertainty about a possible lag in the response to changes in PFOA and PFOS; however, 

the potential to investigate this using our data is limited, having measurements at only two 

times. Also, this study does not allow us to detect a possible irreversible effect of PFOA/

PFOS on serum lipids. If PFOA/PFOS causes an increase in cholesterol due to a wholly or 

partly irreversible mechanism, we would not expect to see any effect on cholesterol with a 

fall in PFOA. A logistic regression model for the association between changing from high 

(>100 mg/dL) to normal LDL cholesterol and the change in PFOA was limited due to power 

considerations; there were only 56 people who changed from high to normal LDL 
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cholesterol, and we would ideally require more than 100 cases to detect an association.36,37 

Nevertheless, an unadjusted logistic model for the association between changing from high 

to normal LDL cholesterol and change in (log-transformed) PFOA predicted an odds of 0.96 

(95% CI = 0.92–1.00) for a 50% decrease in PFOA, which is consistent with the results of 

the linear models. This suggests the effect may be of clinical relevance.

The exact mechanism by which PFAAs might elevate serum lipids in humans is unknown, 

and this limits a causal interpretation. However, both PFOA and PFOS are ligands for the 

PPARα.3,4 The natural ligands for PPARα include saturated and unsaturated fatty acids,38 

as well as eicosanoids derived from n-3 and n-6 polyunsaturated fatty acids.39 Ligand 

activation of PPARα is associated with transcriptional upregulation of a wide range of genes 

that code for proteins associated with fatty acid oxidation and lipoprotein metabolism, such 

as acyl coenzyme A cholesterol acyltransferase, carnine palmitoyl transferase 1, lipoprotein 

lipase, and apo CIII.40 Thus PFOA and PFOS may interfere with lipid regulation by altering 

normal PPARα activity.

The estimated decrease of 3% to 5% in LDL cholesterol for a 50% fall in PFOA or PFOS is 

modest, although at a population level such a shift could have public health impact. Caution 

is necessary in extrapolating the results for PFOA from this study (based on a highly 

exposed population) to the general population, with much lower concentrations of PFOA. 

Still, it appears the impact on LDL of reducing PFOA is greater in those with lower serum 

PFOA concentrations. For serum PFOS, concentrations in the study population and the rate 

of decline are comparable with those measured in the industrialized world.

In summary, our findings from this longitudinal study provide further evidence of positive 

associations between LDL cholesterol and PFOA and PFOS in serum.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Geometric means and 95% CIs for follow-up/baseline change in each lipid measurement 

(mg/dL), according to tertile of followup/baseline change in PFOA (ng/mL).
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FIGURE 2. 
Geometric means and 95% CIs for follow-up/baseline change in each lipid measurement 

(mg/dL), according to tertile of followup/baseline change in PFOS (ng/mL).
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